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Development of global circulation models (GCMs) has created a best tool for studying how the climate can change in the future. They give the description of climate in a set of grid points regularly distributed in space and time with the same density over lands and oceans. Their temporal resolution is very high, however, their spatial resolution is too low. A lot of very important processes like cloud formation, convection, precipitation occur in a spatial scale much smaller  than the distance between grid points. It means that the taking them into consideration needs parametrization - simple statistical models giving an approximate description of these, so called sub-grid, processes. Low resolution means also that the topography, coastline, processes at the land-air, ocean-air and land-ocean boundaries are much simplified in these models. 

Because of low spatial resolution GCMs do not give a realistic description of regional and local climate. It is therefore necessary to downscale the GCMs results. Downscaling is understood as a process linking large scale variables with small scale ones. There are two different ways of downscaling. One of the them uses regional climate models (RCMs) nested in GCMs. RCMs have much higher resolution and can better describe local features. The other group of downscaling methods uses statistical relations between the large scale variables being result of GCMs with small scale variables describing regional and/or local climate conditions. 

Climate projections differ significantly from forecasting a weather. Forecasts can’t predict a weather with high accuracy far beyond a few days. Weather models are based on observations in a very large but limited set of points and these observations are made with limited accuracy. Small disturbances in the data can cause a large effect on weather after some time. It was shown by Lorenz (1960) and is known as a “butterfly effect”. Climate models are not interested in a weather on particular day or month but in statistical features of states of the atmosphere over a long time period, ie. chaotic weather averaged over a long enough time. 

There are also other differences between weather and climate. Weather is forecasted for a relatively short time - a few days, usually less than two weeks. That is why weather changes are caused mainly by changes in the atmosphere. Even changes in the oceanic processes exert only very limited influence on weather because of evidently higher time scale of typical processes occurring in the oceans. In the case of climate the other factors have to be taken into account. Climate variations are also caused by changes in the environment: ocean, vegetation, ice, solar changes and composition of the atmosphere. Some of these changes can be predicted with high accuracy, but the other not. Among them there are land use changes and a composition of the atmosphere with the strongest emphasis on concentration of so called greenhouse gases (GHG), sulphur compounds and aerosols. They all exert a very strong impact on climate. Future climate changes are in high degree related to the degree of these changes, so predicting climate requires reliably information on an atmosphere composition and land use. But unfortunately the concentration of GHG in the future atmosphere is not known and is very difficult to be predicted because of enormously big amount of factors influencing it. Instead of it we can make some scenarios of future evolution of population and economy on the world and than the other scenarios how the climate will change if particular scenario happens. 

A set of such scenarios was developed by the International Panel on Climate Change (IPCC) and published in the Special Report on Emission Scenarios (..., SRES). These scenarios represent different possibilities of future evolution determining driving forces. The most important factors are demographic development, socio-economic changes and technological  development. They all exert a strong impact on future greenhouse gas emissions and land use pattern.  There are 40 SRES scenarios, divided into four families based on four storylines: A1, A2, B1 and B2. These storylines differ in speed of population change, technological development,  economic growth and convergence among regions. Three groups of scenarios are distinguished within A1 family: A1F1, A1T and A1B. They differ in degree of exploration of alternative energy resources. A1F1 group consists of scenarios with high fossil fuel use. Scenarios in A1T group characterize high percentage of non-fossil fuel energy sources. The diversified, balanced fossil fuel scenarios are collected in A1B group.  Each of the other families creates only one group. Scenarios in particular groups differ in the approach used to characterize future emissions basing on the same development path defined by projected population and socio-economic changes and technological development. No scenario is privileged. No probability is assigned to any scenario. They all define ranges of future greenhouse gases (GHG) emissions and land use changes, particularly agriculture land and forest area. These ranges widen with time because of rising uncertainties of demographic, socio-economical and technological development. Total carbon emissions cumulated from all sources (and sinks) range from about 770 to 2540 GtC at the end of the 21st century. 

Beside uncertainty related to our poor information on land use and GHG there are other sources of errors in models. Among them are limited number of input data and their limited accuracy which, according to the chaotic nature of weather, causes that the very small difference in initial conditions can lead to slightly different climate features as each simulation gives different set of weather realization. If it is the only source of error the differences between different simulations should be hold within the ranges of typical climate variability. Unfortunately it is not the case. Because many sub-grid processes have to be represented in models in a simplified, usually statistical form, and are not very well predicted by these models. For example modeling of cloud formation, their optical and radiative features and creation of atmospheric precipitation are still burden with considerable error.

Because of all these errors climate models should be evaluated on the real climate past or current. It can be done by comparison of simulations with observations. It could lead to selection of the best model, but unfortunately it is not possible. Usually one model can better describe one parameter than the other model, but this second describes better the other variable or the same one but in the other part of the world. Of course it is possible to exclude some models, but still we have a set of models which are quite good but still far from the excellence.  We can estimate the differences between simulations and real climate data on the ground of so called reference period from which we have observational data. These differences, usually called biases, vary in space and typically also in daily and annual cycles. 

The models give the description of climate in set of grid points. Each grid point represents the conditions that exists in a region surrounding this point, being the mean value for this region. It is a reason why the distributions of simulated variables are usually smoothed in comparison with station data. Simulations underestimate the highest values and overestimate the lowest ones (Deque, 2007). It means that the bias is also different in different parts of distribution. 

There is really a big number of sources of errors of climate predictions, so preparing a scenario for future is a big challenge. Any singular method can’t be used for all variables and regions. 

· Dynamical downscaling - why we use RCMs, and what kind of improvements we can suspect, how different RCMs differ (~5 pages Philip Lorenz)

· Statistical downscaling:
- Perfect prognosis methods: linear (multivariate regression models, canonical correlation analysis) and nonlinear (analogs, cluster analysis, neural nets) (~5 pages Rasmus Benestad)
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Fig. 1 An autumn picture of Rondane mountain range in Norway showing the geographical extent of fresh snow. The snow cover depends on the local temperature, in addition to snow fall. Photo: R.E. Benestad.

The fundamental criterion for downscaling is that the local variable of interest depends on the large-scale conditions as well as the local geographical conditions. The large-scale situation is described by a predictor, represented by the symbol X in mathematical equations. The local variable is usually referred to as the predictand and symbol y, whereas the geographical parameters are denoted by symbol g. It is usually not possible to explain the predictand completely in terms of X and g, and the contribution from local small-scale processes are in principle not downscalable, and is therefore  described as small-scale noise η.  Mathematically, this can be expressed as follows:

 y = f(X,g) + η.


Fig. 1 illustrates how the local conditions depend on the geography and the large-scale situation. The snow only stays where the temperature is below freezing, which is only above a certain elevation. Furthermore, the large coherent extent of the snow shows that the local temperature is part of a larger pattern. The exact value may vary from location to location (small-scale noise η), but it is possible to say from this picture that the temperature in the snow-covered region is mainly below freezing. 

In the illustration above, the large-scale condition X is the snow-cover, but it is better to use a predictor with a more direct physical relationship to the predictand. Often X can be the mean sea-level pressure or the large-scale temperature pattern.

Different aspects of local and regional climates have different characteristics. For instance, the description of temperature tends to provide spatial patterns which are closely tied with the elevation (Livingstone et al, 1999), as shown in the illustration above. However, for variations in time, the anomalies tend to vary slowly with distance (Hansen et al., 2006). Furthermore, the temperature is close to being normally distributed, which makes linear techniques, such as least squares methods (Wilks, 1995) suitable for modelling temperature changes. The large spatial extension of the temperature anomalies suggests that they are well-suited for downscaling, having a close association with large-scale conditions. The day-to-day changes in the temperature can also be understood in terms of advection, passage of fronts, and radiative forcing (cloudiness). 

Precipitation differs from the temperature in several respects. One particular property that precipitation has, but few other climate variables, is two types of statistical distributions depending on whether there is a wet day or not. For dry days, the distribution is just zero. For wet days, there is another distribution describing the frequency of getting certain amounts. The wet-day distributions cannot be assumed to be normally distributed, but are better described by an exponential or a gamma distribution (Vlček & Huth, 2009). Rain may furthermore be generated by large-scale cloud systems or by local convective storms. Furthermore, mountain ranges (up-slope orographic forcing and rain shadows) and the distance to the coast affect the rainfall statistics. The time evolution of precipitation is characterised by the persistence of rainy days and dry spells, as well as the transition probability between wet and dry.

Wind can be characterised by two variables: the wind speed and its direction (alternatively the zonal and meridional components) (Pryor et al. 2005). Local wind is often a result of chaotic turbulence in addition to the large-scale flow of the free atmosphere above. The flow over geographical features may not be well correlated with the large-scale air flow, and wind direction and speed may change substantially over short distances. Nevertheless, extreme winds are often associated with deep low-pressure systems/storms. 

Because of these differences, different statistical techniques may be required to provide an adequate description of the aspects that we are interested in. The statistical methods can be classified as perfect prognosis methods (Maraun et al., 2010), consisting of  linear (multivariate regression models,canonical correlation analysis), and non-linear methods (analogs, cluster analysis, neural nets). The linear methods are often adequate for describing temperature, but it is also possible to transform some of the other variables so that linear methods may be applied to the terms of either side of an equation describing their dependence. The different models also differ in their calibration strategies and how they are optimised. In addition to these, it may be possible to downscale the shape of the probability density function (pdf) directly, rather than the day-to-day variability of some variable. Downscaling of pdfs seem promising, but does not belong to either the PerfProg or the MOS categories.

EOFs – a framework for representing the large scales in predictors

The predictors X in downscaling involve identifying large-scale spatial patterns of some variable (e.g. temperature or mean sea-level pressure) that co-varies with the predictand. It is then important to find the same type of patterns in the climate model. The large-scale variability can be described in terms of orthogonal empirical functions (EOFs) (Lorenz, 1956; North, 1982), a kind of principal component analysis (PCA) (Strang, 1988), or in terms of a set of grid point (ref Huth). The spatial structures of the EOFs describe a set of spatially coherent 'modes' that describe the variations of the gridded data. The leading modes describe the structures that are most pronounced and with the greatest spatial scales, and the higher order modes are associated with less variance and smaller spatial scales. 

Often, only a small number of leading EOFs represent real features, whereas the higher order EOFs describe noise (Wilks, 1995). It is therefore possible to describe the main features of a gridded data in terms of a relatively small number of EOFs. Each spatial EOF pattern is associated with a vector of weights, describing how strongly this pattern is present at any time of the record. This vector is often referred to as 'principal component' (PC). The PCs are the basis for the downscaling model calibration, for instance a multiple regression against the predictand. The benefit of using of EOFs is that they are orthogonal and make the model calibration easier and more robust (no co-linearity).

PerfProg – a brand of calibration strategies.

The brand 'perfect prognosis methods' (PerfProg) describe a class of empirical-statistical downscaling models that involve a specific strategy for model calibration (Wilks, 1995). These use gridded observations or re-analyses (Kalnay et al. 1996; Simmons and Gibson, 2000) to calibrate against a predictand. First a predictor is taken from historical data, usually gridded analysis or re-analysis, and then a relation is found with the predictand (downscaling model calibration). Then the climate model results are compared with the predictors used to calibrate the downscaling model, and steps are made to ensure that model results correspond with the calibration data (e.g. through a regression analysis). The PerfProg method may involve linear and non-linear methods.

A different strategy, known as 'model output statistics' (MOS) use the model output directly in the calibration of the statistical models, rather than gridded observations. MOS can only be used when the model has been run for a period for which there are predictand data, and when the model is constrained by observations so that it is fed information about the day-to-day variations. While MOS can correct for systematic biases, such as shifts in location of storm tracks, the PerfProg strategy assumes that the model results are unbiased. In addition to the PerfProg and MOS strategies, it is possible to employ a hybrid method, involving common EOFs (Benestad, 2001), more on which will be discussed later.

For empirical-statistical downscaling, it is crucial that the same spatial patterns identified as having a strong association with the predictand are found in the climate model results that are used for prediction of local climate characteristics. One way to do this is to carry out two separate EOF analysis, and then use a regression analysis to ensure that similar patterns are used in the climate model (PerfProg). It is also possible to combine the gridded observation and the climate model results on the same grid (by interpolation, and removing e.g. the mean value to by-pass bias problems), and then carry out a 'common EOF' analysis. When using common EOFs, only the part of the PCs representing the observations are used for calibration. This means that the time series are no longer orthogonal, but this strategy ensures that they describe exactly the same spatial pattern in the observations as in the climate model results (Benestad, 2001). The use of common EOFs also eliminates a second step of regression, and hence is simpler in mathematical terms as well as omits one variance-reducing analysis stage.

Different types of downscaling models

Once the framework for representing the large-scales is established, one can proceed with the task of actually calibrating the downscaling models. There are different options, and the best choice depends on the type of predictand. If the relationship between the predictor and predictand is expected to reflect the two sides of an equation (ideally with the same physical units), then the simple linear approach is probably the best choice. If the relationship between the large and small scales are theoretically known, it is also possible to apply a transform to the quantity on either side of the equation to make the quantities linearly dependent. Whenever possible, a linear model is to be preferred for the reasons of simplicity and transparency.

Linear methods

Linear methods include regression, for instance least-mean-squares estimation. If the data are normally distributed (Gaussian), then an ordinary linear model (OLM) can be employed in a regression analysis, but for non-Gaussian data, a generalised linear model (GLM) should be used. For Gaussian data, canonical correlation analysis (CCA) (Busuioc et al., 1999) and singular vector decomposition (SVD) are alternatives to regression (Bretherton et al., 1992). The difference between these approaches, is that regression minimizes the root-mean-square errors (distance between predictions and observations), the CCA maximizes the correlation, and SVD maximizes the co-variance between two fields. 

The calibration of the linear models gives a set of coefficients describing how the different PCs should be weighted (a scaling factor) for get an optimal fit. Moreover, the linear methods involves weighting a combination of time series differently so that their sum gives the best reproduction of a given 'truth'. If the training set involves  many different series, it is possible to find a set of combination that can provide a good fit even if there is no real link between the predictand and predictor. This situation is known as 'over-fit' (Wilks, 1995), and, hence, multiple regression should involve stepwise screening to avoid over-fit. The set of coefficients can be applied to the spatial patterns (EOFs) - in addition to the PCs – and hence the sum of the weighted patterns describes the spatial structure in the predictor that is associated with the variations in the predictand. This pattern is referred to as 'regression pattern', and can provide a basis for evaluation. In many cases, there are a priori information about what this pattern should look like, such as a spatial map of correlation coefficients. In all cases, the downscaling models should be evaluated on independent (out-of-sample) data, which were not used for calibrating the model.  

Non-linear methods

The non-linear methods involve various strategies, such as analogs, weather classification, cluster analysis, and neural nets. The analog model, weather classification, and cluster analysis all involve a re-sampling of past measurements. These re-sampling techniques suffer from one caveat, that tails of the distributions will be distorted because the sampling cannot produce new record-breaking values (Benestad, 2008).  Even stationary series are expected to produce new record-breaking events, given sufficiently long intervals for observations. Theory of independent and identically distributed (iid) series shows that the expected occurrence of new record-breaking events will converge towards zero, but never actually become zero. Nevertheless, this implies that the upper and lower tails of the distribution of the results from the re-sampling methods may be distorted, and that the results may have to be re-calibrated. A re-calibration can be performed once the theoretical pdf is known through local quantile mapping.

Analog models

The simplest non-linear method is the analog model (Zorita and von Storch, 1999; Timbal et al., 2008), which simply involves searching the record of past events and taking the day that most closely matches the situation one wants to predict. The observed value for the predictand for this day is then used as predictand. Typically, the situation is described in terms of mean sea-level pressure (MSLP) patterns, and the task is to find the MSLP from the past records that most closely matches the one that the climate model predicts for the future. There are a number of different criteria for selecting the 'most similar state'. A simple scheme is to apply pattern correlation. The search may also be based on how similar the states are in terms of an EOF-analysis. Such a search uses the leading EOFs to define an 'n-dimensional' space (Imbert & Benestad, 2005), and defines the day with the least euclidean distance between the PC loadings for the historical record and the predicted situation as the best analog. 

Cluster analysis

It is also possible to base the predictions on a number of closest states (Wilks, 1995), either by taking the mean of the days with close matches. Another approach is to use the observed values for the all the days that match the predicted state, and construct a statistical distribution (histogram). From this sample, or a fitted probability density distribution, one may draw a random value. In some cases, the PC loadings may cluster into different groups in the EOF space, and then it is possible to use these clusters for defining the number of days with similar states. A cluster analysis is used to group the EOFs into different regimes.

Neural nets 

Neural nets involve various adaptive learning algorithms, like 'artificial intelligence' (Hewitson and Crane, 2002; Wilby et al., 1998). These may be effective at identifying signals and patterns, but it can be difficult to understand their physical meaning. Often, neural nets are used to prepare the data before the actual downscaling, for instance by classifying the data in terms of 'self-organised maps' (SOMS). The disadvantage with neural nets is that they need long time series for proper calibration, and it is important to test the results to see if they identified real relationships. Neural nets may provide a fit that is fortuitous rather than real, and care must therefore be exercised when employing these. It is also hard to see what actually happens within the calibration process, and such non-linear techniques have some times been characterised as a 'black box'.

(Imbert & Benestad, 2005)

Advantages with perfect prognosis methods

The advantage with the perfect prognosis methods, linear and non-linear, is that they add and make use of additional empirical information, thereby providing more realistic results than the raw model results. Models provide a simplistic and idealised description of the real world, and most global climate models are not designed to describe local details. The perfect prognosis methods moreover provide a bridge between model and real observations, mapping (in mathematical terms) the model results onto real data. Often, the quality of the GCM results may be assessed though empirical-statistical downscaling (ESD). 

Even regional climate models (RCMs) are limited in terms of describing the local scale, as their resolution may not provide an adequate description of the real terrain (smoothed surface description), and the parametrisation of small-scale processes may not account for local spatial variability in vegetation, hydrology, and elevation. Furthermore, RCMs may have systematic biases, and the different choices for the representation of small-scale processes (parameterisation packages, often referred to as 'model physics' although these are statistical models) may give different results. Hence, RCMs may introduce additional uncertainties (Pillippo et al., 2008). 

Finally, perfect prognosis methods are fast to run, and ideally for downscaling a large ensemble of GCMs and over entire simulation runs. RCMs, on the other hand, tend to be more computationally demanding, which limits the number of realisations that can be provided. The strengths and weaknesses of perfect prognosis methods and the RCMs are independent of each other, so that both approaches should be employed and the results should be compared. Converging results provide additional confidence, whereas diverging results bring on the question about which is more reliable.

Disadvantages

The main disadvantage of all empirical-statistical downscaling (ESD) is that they are limited in terms of predicting variables for which there are long and good quality observations. This means that ESD can be applied to locations were measurements have been made for a long time, for instance of temperature or precipitation. The time resolution of the measurements, as well as of the predictors, also limits the type of results that can be achieved. RCMs, on the other hand, can provide a complete picture in time, space, for different time scales, and with internally consistent relations between the different variables. The consistency between the different variables may, however, not necessarily match that seen in the real world, and hence the term 'physically consistent' is inappropriate for describing these models.

The  perfect prognosis methods also make a number of assumptions, such as the relationship between predictand and predictor does not change over time. Similar assumptions are made for the parametrisation used in both GCMs and RCMs, for instance the relationship between aerosols and cloud drops, between gravity waves and the mean flow, surface vegetation and the temperature/water, etc. As far as possible, these statistical models are based on a physical understanding (e.g. bulk formula for wind stress, convection schemes), and hence are based on more information than just a statistical analysis. It is important to evaluate the robustness of these statistical models, by dividing the data into two parts, use one part for calibration and the other for verification. Furthermore, the model results may be used as surrogate data, using the first half of the simulation run to represent the observations. A surrogate for the predictand can be taken from a grid point, whereas the predictor is taken to be the large-scale pattern. 

The choice between representing the predictors in terms of EOFs or as grid-point values, may also introduce differences (Huth, 2004). The results may even be sensitive to the size of the predictor domain (Benestad, 2011), for which a subjective choice must be made. If the domain is too large, unrelated noise may 'drown' the relationship between the predictor and predictand, and negatively correlated teleconnections may give incorrect signs (Benestad et al. 2008).

Errors in observations will hamper the construction and evaluation of  perfect prognosis methods. In some cases, it may be possible to get around this problem by excluding suspect numbers. For instance, if there is a small number of very large errors (outliers), then the calibration(Imbert & Benestad, 2005) may be carried out on a subset of the data. However, care must be exercised for not 'mining' the data and 'cherry-picking' the data. It is always a good idea to test the models on out-of-sample (independent) data.

Sometimes it may be difficult to identify which variables to use as predictors. It is important that the predictors 'carry the signal' that we want to predict. MSLP may for instance be a poor choice for climate change scenarios, as there may not be a close link between the pressure patterns and a general warming. The predictors should also exhibit a strong relationship with the predictand, so that a large portion of the predictand variance can be reproduced. For regression analysis, the portion of the variance is reflected in the R2-statistic (Wilks, 1995). Finally, the perfect prognosis methods hinge on the GCMs' ability to reproduce the regional details, and hence similar structures in the predictors as seen in the observations.

All the requirements regarding predictors, restrict the choice, which can be a limiting factor to successful employment of perfect prognosis methods. For temperature, however, large-scale temperature fields from re-analyses seem to be a workable solution to the choice of predictors (Benestad, 2011; Hanssen-Bauer et al., 2005). The benefit is also the lower risk of non-stationarity, as the local temperature is expected to be a part of the larger temperature structure for physical reasons. 

It is more tricky to find suitable predictors for precipitation. Large-scale precipitation, which can be taken from re-analyses, is expected to contain long-term signal, but is often not strongly related to the local precipitation measurements. The reason is that precipitation from re-analyses are prognoses that are not directly constrained by observations, and that these prognoses suffer from biases and model shortcomings. Another issue is whether the GCMs are able to reproduce the general regional spatial precipitation structures. For daily precipitation, the data are strongly non-Gaussian, and may exhibit a different statistical distribution to the precipitation structure over larger areas. MSLP does not (at least explicitly) hold information about the air's thermodynamic character (temperature and humidity), and may not contain all of the climate change signal.

Most of the weaknesses with perfect prognosis methods, however, can be explored. ESD should not be seen as merely a way to get a value, but as an advanced form for analysis, where different relations can be tested. For instance, the question about non-stationarity can be tested through appropriate experimentation, where the predictors and predictand are split into two parts, with one being used for calibration and the other for evaluation. The ESD models may also be developed entirely on GCM data, taking a grid-point as the predictand and a larger area as predictor. Furthermore, spatial analysis of results from neighbouring stations and R2-statistics can provide useful information about the quality of the results (Benestad, 2011). Since RCMs and ESD are independent and complimentary means of downscaling, with different weaknesses and strengths, it is also important to carry out both and look for where the results converge and diverge. 

The  weaknesses discussed above may not involve the greatest uncertainties associated with downscaling. Often the regional picture provided by different GCMs, or even different runs with the same GCM, vary substantially (Giorgi, et al., 2008; Chen et al., 2006). Hence, it is important to sample the spread of possible solutions through large ensembles of GCM runs (such as CMIP3 and CMIP5). Since ESD is computationally cheap and effective, it provides a well-suited means for providing information about probabilities and confidence ranges. ESD can also be used to downscale local climate for remote locations far apart (Benestad, 2011). RCMs, on the other hand, is more limited in terms of number, region, and length of runs, but provide a more comprehensive picture of space and interrelations for a smaller selection of climate projections. 

A final comment about ESD is the possibility to downscale the shape of pdfs directly. New promising methods are being developed for 24-hr precipitation, and preliminary results suggest that  it may be possible to predict changes in percentiles once the change in the -wet-day mean precipitation and the wet-day frequency is known. This type of approach is discussed in more detail in Benestad et al. (2008) and Benestad (2007). 
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- Model Output Statistics (~5 pages Joanna Wibig)

· Evaluation techniques (~5 pages Douglas Maraun)

· Ensembles, how to use them, how to assess an error of projection? (~5 pages Erik Kjellström)

· Projections in impact studies (~4 pages )

· Regional climate futures based on analysis of driving factors (~4 pages )

short description what it is for, links to literature explaining details, concentrate on advantages, shortcomings and limitations shown on examples

References:

Benestad RE, Hanssen-Bauer I, Chen D, 2008, Empirical-statistical downscaling, World Scientific Publishing Co. Pte. Ltd., 216 pp.

Maraun D, Wetterhall F, Ireson AM, Chandler RE, Kendon EJ, Widmann M, Brienen S, Rust HW, Sauter T, Themessl M, Venema VKC, Chun KP, Goodess CM, Jones RG, Onof C, Vrac M, Thiele-Eich I, 2010, Precipitation downscaling under climate change, recent developments to bridge the gap between dynamical models and the end user, Reviews of Geophysics,

4.3. Projections of future climate change 
Lead author: Ole Bøssing Christensen
Contributing authors: Erik Kjellström, Torben Sonnenborg, Aslak Grinsted, Markus Meier

4.3.1. Atmospheric changes (T, P, Wind, DTR, extremes) 

Ole B. Christensen and Erik Kjellström

The ENSEMBLES project, as well as a large government-funded simulation efforts by several institutions, but mainly the SMHI, have increased the available base of regional climate change simulations considerably,compared to the state at the time of BACC-1. As a consequence of this, we have better documentation for estimates of climate change over the Baltic Basin. Furthermore, we have some indication of the uncertainty of these projections, mainly of the part of the uncertainty which are related to model shortcomings and climate variability.

In the next few years, the CORDEX project, in particular EURO-CORDEX, will provide ensembles of high-resolution simulations with spatial resolution down to around 10 km for Europe, including our area of interest. This resolution is expected to facilitate considerably the applicability of RCM data as input to various impacts models.

4.3.2. Hydrological changes incl. terrestrial cryosphere
Torben Sonnenborg

No conclusions formed yet, but there are many new investigations to discuss.

4.3.3. Sea level
Aslak Grinsted

4.3.4. Marine physical changes incl. sea ice, storm surges and wind waves

Markus Meier

More publications are available than at the time of BACC-1. Quantification of uncertainties is possible with the help of ensemble modelling. No surprise for physical variables. But new aspects from coupled physical-biogeochemical modelling.
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